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ABSTRACT

In continuance of system studies on the science package for an

unmanned Martian roving vehicle, a new mathematical model for the

- gas chromatograph has.been developed which incorporates the hereto-

fore .neglected transport mechanisms of intraparticle diffusion and

rates of adsorption. Moment analysis of this Inter-Intraparticle

Adsorption Model has showed the model to be more capable of predict-

ing spreading in experimental chromatograms. Because a closed-form

analytical solution to the model does not appear realizable, techni-

ques for the numerical solution of the model equations are being

investigated. Criteria have been developed for using a finite term-

inal boundary condition required in numerical solutions in place of

an infinite boundary condition used in analytical solution techniques.

The method of Finite Differences appears computationally inefficient

for application to equations of the type to be solved. The class

of Weighted Residual methods known as Orthogonal Collocation is

presently being investigated and appears promising.
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I. INTRODUCTION AND SUMMARY

The mathematical modelling of the gas chromatorgaph is one sub-

task of a group effort designed to define fundamental system design

criteria necessary for an optimal design of a combination gas chroma-

tograph - mass spectrometer which is to be part of an unmanned mission

to Mars'. The task which must be performed by this part of a Martian

Roving Vehicle is the analysis of samples to determine the existence of

organic matter and living organisms on the Martian surface. The analy-

sis will involve the subjection of gaseous, liquid, and solid samples

to biological and chemical reactions, with subsequent product separation

and identification using the gas chromatograph - mass spectrometer

system.

The chromatograph may-be looked upon as a separating device where

the phenomenon of adsorption-desorption is utilized. Owing to the

different characteristics of various chemicals, each species will adsorb

and desorb at different rates when exposed to a packed bed of graxular

particles with or without a liquid substrate. Because of the unique

behavior of each chemical, a multi-component sample may be injected

into a chromatograph and elute as separate waves of specific chemical

species.

The transport mechanisms which have been included in previous

model formulations are all interparticle mechanisms with simple adsorbed

phase behavior assumed. These previous model formulations have proven

incapable of adequately predicting component behavior in all cases.

Consequently, a new model is developed which includes both interparticle
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and intraparticle transport mechanisms. This.model is analysed in the

Laplace transform domain using the method of moments. The first three

moments of the impulse response of the model are derived. Using actual

input data, predictions for the first three moments of the output data

are made and are compared with actual output data and predictions of

a simpler interparticle model. The results indicate that the new model

is more capable of the prediction of the moments of the actual data.

Because the mathematical complexity of the new model prohibits

a direct, closed-form analytic expression for a response, investigation

of numerical techniques: applicable to the equations of the old and new

models is made. The numerical techniques require a finite terminal

boundary condition as opposed to an infinite column boundary condition

used in analytic solution (when possible) of the chromatographic model

partial differential equations. Using a simple, transient diffusion-

convection equation, criteria are developed wherein a finite terminal

boundary condition can be applied to yield infinite column behavor at

the bed outlet. (

An analysis of two methods for the numerical solution of partial

differential equations of the type encountered in the chromatograph

modelling work is subsequently made. The technique of Finite Differ-

ences is rejected due to excessive computer time required to produce

model simulations. The technique of Orthogonal Collocation, while not

established as the best method, offers promise and is the current area

of modelling endeavor.
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II. CHRORATOGRAPH SYSTEM MODELLING

A. Chromatograph Modelling Background

One area of the overall gas chromatograph systems study has

been the mathematical modelling of the chromatograph system. Work in

this area has been carried out by several investigators (Sliva, 1968;

Voytus, 1969; Taylor, 1970; Keba and Woodrow, 1972). A course has been

pursued wherein successively more complex models have been considered.

These models have all yielded analytical expressions from which a simu-

lated chromatogram could be computed directly. Comparison of predicted

system behavior with actual system data has directed modelling efforts

to consider more adequate and hence more complicated models.

Prior to this investigation, the most complex model pro-

* posed for the chromatograph system was based on an interparticle phase

mass balance and an adsorbed phase mass balance. Several transport

mechanisms were included: axial diffusion, convection, and mass transfer

between the interparticle and adsorbed phases. A linear isotherm was

used to des ribe the adsorption kinetics. This model has been studied

and compared (Keba and Woodrow, 1972) for the cases of finite rates of

mass transfer to the adsorbed phase (nonequilibrium adsorption) and

infinitely high rates of mass transfer to the adsorbed phase (equilibrium

adsorption). In both cases, simulations using the models failed to

predict the degree of dispersion exhibited by many of the experimental

data. It was concluded that adaitional transport mechanisms, e.g.,

intraparticle diffusion, may be contributing appreciably to the

overall adsorption-desorption process. Hence, further model develop-

ment and analysis was indicated.
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B. Development of the Inter-Intraparticle Adsorption Model

Previously, the intraparticle region of the chromatograph

packing material has been modelled as being nonexistent or as a region

where the transport processes occur at such a rapid rate so as not to

significantly affect the dynamic behavior of the system. It is the

purpose' of this section to reformulate the chromatograph system model

by including the transport processes which are presumed most likely to

affect the dynamics of the adsorption-desorption process within the

chromatograph packing material.

Figure 1 presents graphically the transport processes to be

modelled. The sample to be separated is injected into a relatively

inert carrier gas, e.g., helium. As this slug of sample is transported

down the chromatograph by the carrier gas, the various species diffuse,

adsorb, and desorb. Diffusion of the chemicals in the direction of the

carrier gas flow in the interparticle region is represented by the

dimensionless parameter,. PeE, which is determined by the system fluid

mechanics. Mass transport from the interarticl. region to the intra-

particle region is represented by a dimensionless parameter, NtoG

which is essentially determined by the system fluid mechanics. Diffusion

in the intraparticle region is represented by dimensionless parameter,

PeA, which is in part determined by the properties of the particle

packing. The rate of adsorption within the particle is characterized

by the dimensionless parameter, NRU. Adsorption-desorption within the

particle is represented by mR, a thermodynamic parameter peculiar to

each species. This parameter contains an equilibrium constant, m,



Figure 1
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TRANSPORT BY ADSORPTION/
DESORPTION



and the quantity RI'. RI is the ratio of moles of fluid within the

particle to the moles of adsorptive sites within the particle. The

quantity R is directly related to the quantity R0  where RO is

the ratio of moles of fluid within the total bed to the moles of adsorp-

tive sites within the total bed. The relationshin between these quanti-

ties is

RI = / RO (1)

The reason for noting this relationship so that the parameter mR0 has

been noted in previous models and the above relationship serves as a

unifying concept for the new model formulation which follows.

With the above concepts in mind, the following set of dim-

, ensionless equations has been derived, based on the assumptions which

follow:

An interparticle phase mass balance:

1 N y y Y (2)
Pe 2 6 z toG i -

An intraparticle phase mass balance:

S2 + ] - NRU (i- ) = (3)

Pe) R r r r R3ic)

* See Section IX, Nomenclature, for definition of terms.

** See Appendix A for derivation.



An adsorbed phase mass balance:

x a(' = NR (Yi - yi )  (4)
RRU a- i

A thermodynamic relationship between the intraparticle
and adsorbed phases:

Yi = m x (5)

The above equations are valid under the following assumptions:

1. The column is isothermal.

2. The carrier gas velocity profile is flat.

3., The axial diffusion coefficient is a composite factor

which may or may not have a turbulent component.

4. The gas composition is approximately constant in the

radial direction at a given axial position. The con-

centration gradient occurs in a thin boundary layer at

the interparticle-intraparticle interface.

5. The gas composition within the particle is approximately

constant in the angular direction at a given radial

position;.the concentration gradient occurs only in a

thin boundary layer near the adsorbent surface.

6. The adsorbent layer is so thin that there is no diffu-

sional resistance within the layer in the direction

normal to the surface.

7. The diffuSivity in the adsorbent layer is so small that

there is no diffusion in the direction parallel to the



surface in the intraparticle radial direction.

8. The net rate of adsorption for the carrier gas is

negligible.

9. Only one component is adsorbed and its gas phase com-

position as a mole fraction is small compared to unity.

10. The carrier gas behaves as an ideal gas.

An applicable set of boundary and initial conditions are

as follows:

Initial Conditions:

y (z, 0) 0= (6)

i (zr, 0) = 0 (7)

Xa (z, r, 0) = O (8)

Boundary Conditions:

y. (0; ) = A6 (9)

a L () / Pe N (toG(Y- yi); when r=l ... (10)

= o ; r=O (11)
r

lim y (z, e) = finite (12)

These conditions reflect a sample-free column at zero time, a sample

injected as an impulse, mass transfer between the interparticle and

intraparticle regions, no concentration gradient at the center of the



column packing, and no end effects at the column exit.

For the systems under consideration it has been shown by

Keba and Woodrow (1972) that inclusion of the parameter NtoG  is of

minor importance. If one were to consider the case of infinite rates

of mass transfer, i.e., N -m-oa, the coupling condition given by

equation (10) would be replaced by

Yi (z, 1, e)= y (z, G) (13)

Thus, a.model in the form of a set of coupled, partial

differential equations is proposed. Prior to consideration of the time

domain solution of the equations, a moment analysis can be made to

ascertain the predictive capabilities of the proposed model. This

analysis is the subject of the next part of this report.

III. MOMENT ANALYSIS OF THE INTER-INTRAPARTICLE ADSORPTION MODEL

A. Theory and Background

An analysis of a proposed model can be made prior to deter-

mination of the model's time-domain solution to yield the gross charac-

teristics of the impulse response of the model. In addition, because

of the poor predictions of previous models with respect to chromatogram

spreading, it is desirable to know the nature of the response of the

proposed model for the pulse-type forcing functions used in experi-

mental work. The nature of the response can be characterized by statis-

tical quantities known as moments which may be obtained without knowledge

of the time-domain model solution. The moments may be derived directly

from the Laplace domain solution of the model. The following develop-
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ment will indicate how the moments of a model are obtained and how

the analysis can be extended to give the moments of systems forced by

general pulse-type inputs.

The impulse response of the chromatograph may be viewed

as the residence time frequency distribution (Douglas, 1972). This

quantity resembles the probability distribution function which appears

in statistical analysis. The moments of the distribution function.

about the time origin are defined by the following:

"n = n f (O) d / f (9) d (14)

0 0

where

f (e) = the distribution function being analysed.

The denominator of equation (14) is the area under the function. The

relationship of the moments about the origin to the Laplace transform

is developed in Appendix B. The result is:

4n = (-l)n " fn (s / lim f (s) (15)
s ->0 s n  s ->0

where

f(s) = L [f ( ) e - s e f(G) dO (16)

Interest also centers on the moments about the first abso-

lute moment or mean, [l. Mathematically these moments are defined by:

nC D
n f ((n ) d f ((f) de ; n 2 (17)



These moments about the mean pl' are directly related to the moments

about the origin. The relationships are obtained by formal expansion

of equation (17). Appendix B gives the relationships for n=2 and

n=3. For n=2, the moment about the mean is exactly the variance of

the response. For n=3, the moment about the mean is related to the

skew of the response.

One can use the preceding to develop equations relating

the moments of system responses for arbitrary pulse-type forcing

functions (see Appendix B for details). That is, given the system

input data (the moments of which can be computed from equation (14))

and the system transfer function (the Laplace transform of the impulse

response), the moments of the system response may be determined and

i compared with the moments of the actual output data. Referring to

the block diagram in Figure 2, the results are:

A = A.. AG (18)

plY = 1'X + 'lG (19)

2Y X 2G(20)

V3Y = 3X + 3G (21)

Equation (18) states that the area under the output curve is the product

of the area under the input curve and the impulse response curve.

Equation (19) states that the mean of the output occurs at the sum of

the mean of the input function and impulse response. Equation (20)

states that the variance of the output is the sum of the variance of

the input function and the variance of the impulse response. Equation
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x(s) G(s)(s)

X(s) = L [x (9) ; x (G) is the forcing function

Y(s) = L [y (.)] ; y (e) is the system response

G(s) = system transfer function

Figure 2. Typical System Block Diagram
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(21) states that the third moment about the mean of the output is the

sum of the third moments about the means of the input function and

impulse response, respectively.

This technique can also be used for estimating Etem

parameters. Douglas (1972) uses an equation similar to equation (20)

to estimate an axial Peclet number for a packed bed. Schneider and

Smith (1968) apply moment analysis to estimate adsorption equilibrium

constants, rate constants, and intraparticle diffusivities for a

chromatographic system modelled similarly to that of Part II.

However, accurate parameter estimation using this method is limited

by the accuracy of the data used for analysis.

B. Application of Moment Analysis to the Inter-Intraparticle

Adsorption Model

The previous section outlined a method which can be used

to analyse pulsed systems to determine the gross characteristics of

the system response. This section will document an application of the

concepts of moment analysis to the proposed model of Part II.

Consider the set of partial differential equations, boundary

conditions, and initial conditions, equations (2) through (12). A

Laplace transform domain solution for the impulse response or transfer

function was derived and appears in Figure 3; details appear in

Appendix C.

Applying the definition given by equation (15) and using

equation (17), the moments l' P2, and 43 are derived for the

impulse response of the Inter-Intraparticle Adsorption Model. The



Pe
Y(l,s) = exp 2- L +7 (s) Pe

where:
I(s) = NtO (l - (s)) + s

k(s) = b sinh (Val)

(b-l)sinh (r ) + a cosh (a)

NRU ,,RI R 2.a(s) - + NRU + ]s t PeA{[RU"LNRUR) jL A

N
toG

3 B (1-) L 1

E R PeA

= Particle porosity

E = Bed void fraction

Figure 3. Transfer Function for the Inter-Intraparticle Adsorption Model.
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results are presented in Figure 4; details of the manipulations appear

in Appendix D.

The parameters PeE, NtoG, and Pe A can be estimated a

priori. The parameters mRO  and NRU are not predictable a priori.

Previous modeling analysis has estimated mR0 by a curve fitting

process (Benoit, 1971). The estimation of NRU will most likely

involve curve fitting also.

An analysis was made using existing single component data.

The parameters PeE, PeA, and NtoG were estimated using existing

correlations. The values of mRO which were estimated by Keba and
0

Woodrow (1972) using simpler models were used and the parameter NRU

was varied. Tables 1 and 2 give results of this analysis for acetone

at 1000 C and ethylene at 500 C. Both experiments used Chromasorb 102

column packing a porous material. In each case, the moments for the

impulse response of the model were computed using the equations given

in Figure 4. Use of system input data and equations (19) through (21)

give predictions as a function of NRU f-r the Cutput moments. These

predicted values are compared with actual moments of the output data

and with the predictions of the simpler, interparticle equilibrium

adsorption model. Expressions for the moments of the simpler model

were initially developed by Voytus (1969).

The results indicate that the proposed model can more

closely predict the characteristics. of the output data than the simpler,

interparticle model. The results indicate that a value of NRU on

the order of several hundred will give a predicted second moment very



I = 1 + I/mRO + (I-e) P/e

2 2 () 2/PeE + 2 [(I-) P/e] + 1/mR1 )2  [(R/L)2 PeA/15 + (1-e) P/E NtoG]+ 1/WRU (mR I)2

3 = 6 1  2/PeE + 6 [(-e) [/ 2 (1 + 1ai )/N (mR ) [(R/L)2 PeA/15

+ (1-E) P/e NtoG + (1 + 1/mR1 )3 ((1-e) /e NtoG)2

+ 2 (1-E) B (R/L)2 PeA/S t - 23 (RL) Pe / 315

+ 1/NRU2  (mRi)3

Figure 4. Moments of the Impulse Response of the Inter-Intraparticle Adsorption Model.
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TABLE 1

MOMENT ANALYSIS iND PARAMETRIC

STUDY - ACETONE 1000C.

mR(1) (2)
o l,observed 1, predicted l,predicted

0.029 173.29 158.69 156.49

(1) (2)
RU 2, observed 2, predicted 2,predicted

100 815.67 977.55 437.28
200 723.41
4oo00 686.34
800 517.80
1600 483.53
3200 466.40
6400oo 457.83
12800 453.55
25600 - - 451.41 -

(1) (2)

NRU 3, observed 3,predicted '3,predicted

100 25404.o . 23192.2 19499.2
200 20454.e
4o00 19745.3
800 19555. '

1600 19501.7
3200 19485.1
6400oo 19480.4
12800 19477.2
25600 - - 19476.2

Pe. = 8689
-E

Nto = 88960

(L/R)2/PeA = 328.2

(1) Inter-Intraparticle Adsorption Model
(2) Interparticle Equilibrium Adsorption Model
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TABLE 2

MOMENT ANALYSIS AND PARAMETRIC

STUDY - ETHYLENE 50 0 C.

mR (1) .(2)
Ro0 1, observed 1, predicted 1,'predicted

0.194 26.475 25.986 23.719

NR -(b) -(2)
NRU 42 2

observed _redic ted predicted

;100 7.024 13.283 0.388
.200 6.973
400 3.817
800 2.24o

16oo 1.451
3200 1.056
64oo 0.859
12800 1 0.760
?56oo 0.711

- -(1) (21)

NRU "3observed 3(redicted 3predicted

100 19.623 13.049 0.191
200 3.519
400 1.058
800 0.403
16oo 0.219
3200 0.163
6400 0.144
12800 0.137
25600 0.134--

PeE = 9744

NtoG = 79750

(L/R) /PeA  = 436.2

(1) Inter-Intraparticle Adsorption Model
(2 Interparticle Equilibrium Adsorption Model
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close to the second moment of the output data. This magnitude of

NRU is consistent with the values of NRU which were obtained in

independent research by Schneider and Smith (1968). Tables 1 and 2

further indicate that matching of the third moments would give different

values of N RU. However, the use of third moments is not as reliable

because data inaccuracies are further magnified in the analysis.

It should be noted that if one accepts the value of NRU

as being on the order of several hundred for each case, all other

parameters, excluding mRo, are of the same magnitude. The key to the

difference in the two component behaviors is the parameter mRE0

IV. TERMINAL BOUNDARY CONDITION ANALYSIS

Mathematical modelling of chromatographic systems commonly

E. require solutions to equations of the form:

(1/Pe) (2y/z2) -y/dz - RA = y/de (22)

Application of analytical, techniques to the above equation, when possible,

commonly utilize the terminal boundary cc ditionC

lim y (z, e) = finite ; > 0 (23)
Z--D

Use of the above boundary condition in analytical work yields a great

deal of mathematical simplification. In addition, the use of this

boundary condition is consistent with the theory which has been devel-

oped for prediction of the dispersion in packed beds; see, for example,

Gunn (1969).
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However, when numerical techniques must be applied to solve

equation (22), the terminal boundary condition given by equation (23)

must be replaced by a terminal boundary condition which is both computa-

tionally expedient and physically meaningful. A finite terminal boun-

dary condition which has found general usage in chemical reaction

engineering problems (Wehner and Wilhelm, 1956) is:

y (, 8) /z = 0 ; e 0 (24)

Bastian and Lapidus (1956) considered the case where RA in equation

(22) was an adsorption term. A linear relationship was assumed to

describe the adsorption kinetics. For a step-input and the conditions

chosen, Bastian and Lapidus showed that finite column calculations, using

Sequation (24) as a terminal boundary condition, closely approximated

infinite column calculations, using equation (23) as a terminal boundary

condition.

The analysis of chromatograph syst(ms for pulse-type forcing

functions has prompted consideration of t-:e two .erminal boundary con-

ditions. The question arises as to how the use of a finite terminal

boundary condition affects output prediction as compared to the infinite

column case when the system is forced by pulse-type functions. It is

desirable for the two predictions of column outlet behavior (z=l) to be

similar so that the use of'a priori estimates of Pe are valid in

complicated models having the form of equation (22).

In order to answer the above question and to establish the

conditions under which a finite terminal boundary condition can be used
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to yield infinite column behavior at the column outlet (z=l), two

relatively simple problems can be considered:

Case I:

(1/Pe) (42y/ z2 ) .- cy/z - RA = 0 (25)

y (z, O0) = 0 ; >0 (26)

y (0, e) = (e) ; e - 0 (27)

lim y (z, ) = finite (28)
z->a

RA = O (29)

and

Case II:

(1/Pe) (6 2 y/J z2) - (4y/az) - RA = 0 (30)

y (z, 0) = 0 z >0 (31)

' (o, e) = 4 (). e - 0 (32)

C>C y (z0o, ) /dz 0 ; e >0, Z - 1

and arbitrary (33)

RA = 0 (34)

Case I considers the unit impulse response of the simple, one-

dimensional, axial dispersion-convection model in an infinite column.

Case II considers the unit impulse response of the simple, one-dimensional,

axial dispersion-convection model with the finite column boundary condi-

tion. It is desirable to determine the conditions under which the two
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responses are equivalent. These conditions can be determined without

resorting to the comparisons of the analytical solutions for each case,

through use of the method of moments.

At a dimensionless length of unity, the column outlet, the

Laplace transforms of the two solutions are:

Case I:

y (1, s) = exp Pe/2 ) - (arg) (35)

Case II:

y(1, s) = exp + are) ep -(1-zo) arg - - arg

exp [(1-z 0 ) .arg + arg) exp zo (arg)]

- - arg) exp - z0 (arg} ... (36)

where

arg = e2 4+ Pe s (37)

Each, respective output curve can be characterized by its moments.

Two moments are considered here - the first moment about the origin and

the second moment about the mean. The first moment about the origin

gives the time of appearance of the mean of the output curve. The

second moment about the mean gives the variance of the output curve.

These moments, as has been previously noted in Part III, are directly

obtainable from the Laplace transform domain solution. The general

relationships were given in equations (14) through (17). Using these

* see Appendix E for details.
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relationships, the Case I and Case II transfer functions were analysed

to yield:

= 1 (38)

2 = 2 /Pe (39)

and

l = 1 + [exp (-Pe ZO) - exp (Pe- Pe Z)] /Pe.. (40)

2i = 2/Pe + exp (Pe -Pe* zO) [4/Pe - 4 Z/Pe

- 24/Pe2  + exp (-2 ZO Pe)/Pe2

- exp (2 Pe - 2 ZO Pe)/Pe2  ... (41)

If one considers the limit of the Case II moments as ZO becomes very

large, the two results are equivalent, or:

lim ll = = 1

and

lim - = 2 = 2/Pe

Table 3 summarizes the results of parameteric studies of the

two moments considered for each case. The errors in Case II versus

Case I moments for ZO = 1 are significant for low Peclet number.

The error diminishes with increasing Peclet number. This confirms the

qualitative conclusions of Friedly (1972) for high values of Pe.



Table 3. Case I and Cas 'II Comparison Results

Errors at Z0  = 1.0

Relative Error, % Relative Error, %
Absolute / I I Absolute (P2 I'2 II Safe ZO Safe ZO

Error x 100 Error x 10Pe IError II 2 I'2 II 42 I 1 I 1 II 2 I=2 II

2 o0.4323 43.23 1.245 124.5 9.791 11.768

4 0.2454 24.54 0.3125 62.9 5.254 6.021

8 0.1250 12.50 0.07813 31.2 3.043 3.328

16 0.06250 6.250 0.01953 15.6 1.978 2.073

32 0.03125 3.125 0.004883 7.91 1.467 1.490

64 0.01563 1.563 0.001221 3.91 1.223 1.222

128 0.00781 0.781 0.0003052 1.99 1.106 1.044

256 0.00391 0.391 0.0000763 0.976 1.050 1.002

512 0.00195 0.195 0.0000191 0.489 1.024 1.0005
1024 0.00098 .098 0.0000047 0.241 1.011 1.0001

2048 .00049 .049 0.0000012 0.123 1.005 1.00002

4096 0.00024 0.024 0.0000003 0.0615 1.002 1.000005

8192 0.00012 0.012 0.0000000 0.0 1.001 1.ooool000001

< 10-8
T2 I 2 11

-- -- < O-8-- 1
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Table 3 also gives the value of ZO which, when used in Case II, will

yield output characteristics the same as Case I output characteristics.

This means that for a given Peclet number, application of equation (33)

at the noted ZO, will yield output characteristics at Z=1l that are,

for all intents and purposes, the same as those predicted by Case I.

Table 4 presents some typical values of the Peclet parameter

for several systems. For chromatographic systems, the range of the

Peclet number is on the order of 5,000 to 10,000. Thus in this research,

it appears that use of the zero-derivative condition (equation 33) at

the column exit will not cause serious problems.

In conclusion, the comparison of the mean and variance for

impulse responses at Z=l for the two different boundary conditions

, has yielded guidelines which are useful when approximating infinite

column behavior using a finite terminal boundary condition. The use of

the criteria for general pulse-type forcing functions would yield

results wherein the absolute errors between the two cases would be the

same but the relative errors between cases would decrease. The appli-

cation of the results for models including other transport mechanisms

(RA / 0) may be somewhat conservative. When applicable to more compli-

cated models, the method of analysis used here will give more definite

guidelines for each specific situation.

V. EVALUATION OF NUMERICAL TECHNIQUES - FINITE DIFFERENCE

This section and the one that follows present evaluations of two

techniques which are available for the numerical solutions of the type

of partial differential equation models that have been used and that
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Table 4. Peclet Numbers for Four Typical Systems

System Pe

Micro Gas Chromatograph Column 233
(Water in Helium)

Typical Gas Chromatograph Column 5622
(Water in Helium)

Typical Gas Dehydrator 1777
(Water in Helium)

Small Experimental Reactor 155
(S02 in Air)



are being postulated for the chromatographic system. The two methods

considered are the Finite Difference method and the subclass of

Weighted Residual methods known as Orthogonal Collocation.

Finite Difference Method

Finite difference approximations have predominantly been used in

the analysis of partial differential equations. To obtain numerical

solutions to partial differential equations, one replaces the contin-

uous variables with discrete variables. The relations between these

discrete variables in the method of finite differences are called finite

difference equations. The relationships are based on Taylor series

representations of the dependent variable. The domains of the independ-

. ent variables that are discretized form a system of grid points. Figure

5 shows a.grid representation for the transient analysis of a system

with one spatial independent variable. The spatial dimension, Z, is

shown as being bounded and the time variable, 9, is shown with no

particular bound. The grid is a fixed gr4 d; i.eC, spatial discretiza-

tions and time discretizations are uniform for each domain. Note that

the value of Z, the continuous space dimension is given by:

Z = i.( Z)

where i refers to a particular spatial grid point and A Z is the

spacing between spatial grid points. Similarly, the value of 9, the

continuous time variable is given by

j'(L.)
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0 ------------

Si-I i+1 Z Z
i 0

Figure 5. Grid Representation for Finite Difference Method
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where j refers to a particular time grid point and A e is the

interval between time grid points.

For parabolic problems (as is the case for the second-order

chromatograph system models), the two-level implicit method known as

the Crank-Nicolson method is probably most popular and is well docu-

mented (Lapidus, 1962). In this method, the following approximations

are made for the first and second spatial derivatives and the first

time derivative:

Yi+l,j Yi=l,j Yi+l - i-l, j+l1

( Y/L z) 1/2 +
ij 2 (L Z) 2 (AZ)

( z2)ij i/2 i+lj - 2y +_ i-l,j i+l,j+l-2yij+l+i-l'j+.
2 2

(C Y/de)ij ij+l- Yij) / a s

where the i subscript denotes a coordinate in the spatial domain and

the j subscript denotes a coordinate in the time domain.

Preliminary studies have been made applying the Crank-Nicolson

method to the problem:

(1/e ) () y/ /z 2) - y/Z = y/ de

y (Z,O) = 0 ; Z - O

y (0, e)= (e); e > 0

Ay (Z O , 4 ) / -e = 0; e > 0
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Simulations were made with the following conditions.

1. (e) was a triangular-type pulse of duration 0.01 and

with unit area. This is quite a sharp pulse as far as

typical chromatograph input pulses are concerned, but

it was used mainly in the interest of saving computer

time.

2. The Peclet number was fixed at 8,000.

3. The time increment, & 9, was held at 0.0004.

4. The response was studied at Z = 0.05. This is a drastic

reduction in the normal spatial coordinate studied, but,

again, this was done in the interest of conserving

computer time.

5. The terminal boundary condition was applied at ZO = 0.20.

6. The spatial increment, AZ, was varied in the following

sequence:

0.0002, 0.0004, 0.0010, 0.0025

For spatial increment values of 0.0010 and less, the simulations were

stable. However, when L Z was increased to 0.0025, instability in

the form of oscillation in the response was exhibited. The very small

a Z required is directly attributed to the Pe value used. This

instable A Z value is not quite as small as the value that is pre-

dicted by the stability criteria of Price, et. al. (1966).

The simulation for spatial increments of 0.0002, 0.0004, and

0.0010 gave reasonable results when compared to results convolving

S() with the analytical impulse response. The discrepancy between
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between the analytic and numerical computations appeared in the magni-

tudes of each response point - the numerical results were on the order

of 20% too low. This in turn affected the area beneath the response

curve for the numerical results - all areas were on the order of 0.80

as compared with the correct area of 1.0. The area under the analytical

response curve was 0.96 which is tolerable considering the sharp input.

This discrepancy in response area can be resolved by adding additional

parameters to the difference equations to yield an exact conservative

relationship (Rogers, 1973):

System Input - System Output over

the interval j to j + 1

N N

i ,j+1 i,j
i=l i=l

where N is the total number of spatial points. This analysis was not

performed because it was felt that the method already suffered from a

more alarming feature - the high degree of spatial discretization which

was necessary for the large Pe values encountered in chromatographic

systems analysis. Extrapolation of the computing time required for the

simulations performed yields an estimate of one to two hours of com-

puter time required for complete simulations over the space interval

(0, 1.0 +). The time would naturally increase when broader input pulses

are used. Similar conclusions on the use of finite difference schemes

were reported earlier (Pfeiffer, 1972).
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Because of the high degree of spatial discretization required

by the finite difference method and the subsequent high cost of

computer simulations, it is felt that further pursuit of finite

difference formulations for problems similar to the above is not

warranted at this time and that efforts must be directed to other

methods.

VI. EVALUATION OF NUMERICAL TECHNIQUES - ORTHOGONAL COLLOCATION

A recent text (Finlayson, 1972) has dealt with several approxi-

mation techniques for the solution of the differential equations which

arise in the analysis of transport phenomena. A group of approximation

techniques has been designated the Method of Weighted Residuals (MWR).

A subclass of MWR is the Method of Orthogonal Collocation. This method

has been successfully applied to several problems in the realm of

chemical reaction engineering. Investigators in this area include

Ferguson and Finlayson (1970), Finlayson (1971), Villadsen and Stewart

(i967), Villadsen and Sorensen (1969), and Villadsen (1970). The

purpose of h'is section is to present a summary of the theory behind

the method and to discuss investigations that have been made relative

to its applicability to the types of problems that must be solved in

conjunction with the modelling of the chromatographic system.

A. Theory and Background

The Method of Weighted Residuals approach to the solution

of partial differential equations starts with a representation of the

dependent variable, y, by a finite sum of trial functions Pi. An

example might be:
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N

y (z,e) = o (z,.). + a. (e) Pi-1 (z) (42)
i=1

where 00 (Z,e) is a function which may be chosen to satisfy one or more

boundary conditions. The functions Pi(Z) are normally specified and
1

the time-varying coefficients, a.(&), are determined in a manner to

give the "best" solution of the differential equation.

The next step in the MWR is to manipulate the differential

equation such that one side, say the right hand side, of the equation

is zero. Then, the trial function expansion is substituted into the

left hand side. This substitution of the trial function expansion into

the manipulated differential equation forms what is termed the residual,

Res. If the trial function were exact, the residual would be zero.

In MWR, the coefficients, a.(4) are determined by specifying weighted

integrals of the residual to be zero; i.e.,

S (Res) dV = 0 ; j = 1, 2, ... N (43)

V

The choice of weighting functions, W , determines what

class of MWR is to be applied. For the general collocation method, the

weighting functions are chosen as displaced Dirac delta functions:

W. = (Z .) ; j =1, 2, ... N (44)

Substitution of equation (44) into equation (43) gives the result of

forcing the residual to be zero at N specified collocation points.

As the degree of approximation is increased, the residual will be forced
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to be zero at an increasing number of points.in the spatial domain and

the trial function should converge to the true solution within a given

accuracy.

Within the class of collocation methods is the subclass of

orthogonal collocation. The distinguishing feature of this method is

that the trial functions, P.(Z), are chosen as orthogonal polynomials

defined by the following relationship:

(z W(Z) (Z) P (Z) Z = (45)

a

where [a, b] is the interval of orthogonality, W(Z) is a positive

weighting function on [a, b] , C. is a scale factor, and S.. is

the K.ronecker delta. The group of polynomials defined by equation (44)

is said to be orthogonal on the interval Ea, b] with respect to the

weighting function W(Z).

The N collocation points are chosen as roots to PN"Z),

which is the polynomial of the next highest order in the trial function

expansion, the highest being PN-1 in equation (42). The basis for

choosing the roots of the polynomial as the collocation points instead

of equidistant points in the interval of interest can be found in the

theory of polynomial interpolation. Several results, as documented

by Lanczos (1956) are sume.grized here:

1. Polynomial expansions are justified due to the funa-

mental theorem proved by Weierstrass in 1885 which

establishes that any continuous function in a finite

interval can always be approximated to any degree of

accuracy by finite power series.



35.

2. The Weierstrass theorem does not imply that an

approximating polynomial can be obtained by using

equidistant points. This behavior was studied by

Runge in 1901 who showed that equidistant inter-

polation of some very simple analyticAl functions

could in certain regions yield very erroneous

results which did not disappear with increased points.

This behavior is termed the "Runge phenomenon."

3. The difficulties which occur with equidistant inter-

polation disappear when the zeros of the first

neglected polynomial in the polynomial approxima-

tion are used as interpolation points. However,

this introduces the need .to know the roots of the

particular polynomial.

B. Problem Formulation Using Orthogonal Collocation

The solution of parabolic partial differential equations

using orthog)nal collocation requires several steps which are independ-

ent of the particular equation under consideration. This section

presents two formulations which are theoretically equivalent but which

differ in computational and coding advantages. The first formulation,

although somewhat more complex from a coding point of view, will be

shown to be superior for computations.

A trial function has been proposed, Finlayson (1972, p. 105),

for second order systems on the spatial interval [O, 10 . For transient

analysis, the trial function is of the form:
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N

y (Z,G) = f (0) + g (,) Z + Z (1-Z) a. (G) Pi-i (Z) (46)

i=l

The above equation has N+2 unknowns: the functions f(9), g(e) and

{a (e), i=l, N. These are determined by the boundary conditions at

Z=0 and Z=1 and by performing collocation at the N roots of PN(Z).

Thus, one has a set of N+2 points:

Z1 = 0

zn+2 = 1

and {Zj ; j=2, N+l; the roots of PN(Z).

Now, if one were to construct the approximate solution at

these N+2 points, a matrix equation would result:

y(Zl,) 1 Z Zl(1-Z)Po(Z) ...zl(1Zl)PN-l(z) f (

y(Z 2 ,e) 1 Z2 Z2 (1-Z 2 )Po(Z2) ... z2(1-Z2)PN-1(Z2) g (e)

y(ZN+1,) 1 ZN+'1N+1(1-ZN+1 )P (ZN+1) ... ZN+1(1-ZN+1)P N-1(ZN+1

y(ZN+2) 1 ZZN+2(-Z+2 )Po(ZN+ 2 ) ... ZN+2(-ZN+2)PN-1(ZN+ 2 a()

Now define the following quantities:

y(Z1l,)

Y(Z2,4)

y (48)

Y(zN+ )
y(zN+2,9)
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i Z1  z1(1-zl)Po(Z1) ... 1(1-Z)N-1z )

1 z2  z2 (1-z 2 )PO(Z 2 ) ."' 2 (1-Z 2 )PN-1(z 2 )

R

2 N+1 +1(1ZN+1 )PZN+1) ... ZN+1(1-ZN+1)PN-(zN+1) (49)

1 ZN+2  N+2(1-ZN+2)Po(ZN+2- ... ZN+2(1ZN+2)PN-1(ZN+2)

f (e)

g (e)

S a1(e) (50)

Use of equations (48), (49) and (50) reduces equation (47) to the more

compact form:

y= R f (51)

The spatial derivatives may be expressed in a similar form:

S R f (52)

2
y R 2 f (53)6 Z =- -
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where

y(z1,e)/ aZ

ay(zN+2,)/ z

3Y(Z ,+)/ z

2y(z ,e)/a z2

fy(z+,)/ ~ z2Z2

y2
2 = • (55)

z.

S (zN+2,e)/ z2

[R] j,1 = 0 j=1, N+2

[1]3j2 =.1 ; =*1, N+2 (56)

I (1-z) P.-3 (j)
Rl j,i = z(1-) + (1-2Zj) Pi_ 3 (z); j = 1, N+2

i = 3, N+2
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and

R2 j,l = R j,2 = 0 ; j -1, N+2

[R5  j,i=Z.(1-z.) 2Pi-3(z ) + 2(1-2Z) Pi-3( j

3z2  z

- 2 P 3 (Zj); j = 1, N+2

i = 3, N+2

The time-varying vector f may be eliminated from equations (52) and

(53) by premultiplying equation (51) by the inverse of R, R-1  or:

f =R y

and

c ,Y -1
R- R-1  y (58)

2

z R _y (59)

Equations (58) and (59) thus-yield expressions for the first and second

spatial derivatives at the N+2 points in terms of the solution at

the N+2 points.

Alternative to the formulation of above is a formulation

w.hich is presented by Finlayson. (1972, pp. 105-106). Expansion

of .equation (46) yields an (N+l) order polynomial:

N+l

y (Z,G) = f (e) + d () Zi (60)

i=l
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Writing the approximate solution at the N+2 points yields a matrix

equation similar to equation (51):

y= (61)

where:

2  N+1
1 Z1 Z12  . Z1

1 Z2  22  ... Z2N +1

_ ' ' * (62)

2 N+l
1 ZN+1 N+l ... +

_N+l
ZN+2 ZN+ 2  ... N+2

£ (o)

_ d2 (e)

_d . (63)

dN+1i( e

The first and second spatial derivative vectors can be written as:

y = _ d (64)

and

d Z = d (65)Sz -
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where

ji = (i-l) z i-2 il, N+2 (66)

Iq2ji j i-3 j=l, N+2

i = (1-1) (i-2) z ; j=l, N+2
i=1, N+2 (67)

As in the first formulation, the time-varying vector, d, may be elim-

inated from equations (64) and (65) by pre-multiplying equation (61)

-1
by the inverse of , Q , or:

-1
d =y

and

_ -1
-z e (68)

2
ay =. _-1 yl (69)

Thus, equati ns (68) and (69) give expressions which are identical to

equations (58) and (59). The matrix product R1 R- 1  is equivalent

to 1 - and R2 R1 is equivalent to Q2 - 1 . Since the

computations of Q , Q1, and Q2 only require knowledge of the colloca-

tion points and not the knowledge of the particular polynomial coef-

-ficients being considered, one might conceivably prefer the second

formulation. Both formulations require the computation of the inverse

of an (N+2) square matrix.
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Computationally, it is desirable.for the matrix being

inverted to be well-conditioned with respect to inversion. An analysis

has been made comparing the inversion qualities of the matrices R and

9. The ease of inversion is measured by the condition number of R and

respectively and with the number of decimal digits which are left

unchanged following interative improvement of the initial Gauss-Jordan

reduction of each matrix. Stewart (1973) discusses the problem of

ill-conditioning and the use of iterative improvement in matrix inversion.

Table 5 compares the inversion characteristics of R and for

increasing N. The condition numbers cited are lower bounds on the true

condition numbers relative to the L1 norm. Appendix F shows how the

lower bound and the upper bound on the condition number is computed.

Except in the analysis of Q for (N+2) 222, there were no practical

differences in the lower and upper bounds.

Table 5 indicates that the matrix R is well-conditioned

with respect to inversion using the double-precision word length avail-

able on the IBM 360/50 computer. In all cases, the computation of

-l
the product R R- 1 yielded a matrix whose off-diagonal elements were

less than or equal to 10 6 . The table also shows the progressively

poorer conditioning of Q with respect to inversion. The (26 x 26)

case is so ill-conditioned that inversion using the available computer

* The L1 norm of an (n x n) matrix A is defined as:

L1 norm (A) max ; j=l, 2, ... n
\i=l i



Table 5. Comparison of Conditioning of R and _ Matrices with

Respect'to Inversion

Lower Bound Lower Bound
Matrix Size on Condition of R IDGTR on Condition of _ IDGTQ

( 3 x 3 ) 0.120 x 102 15 0.240 x 102 15

( 4 x 4 ) 0.328 x 102 15 0.149 x 103  15

( 5 x5 ) 0.739 x 102 15 0.944 x 10o3 15

(6 x 6 ) 0.142 x 10 3  15 0.591 x 104  14

( 7 x 7 ) 0.243 x 103 15 0.366 x 105 14

( 8 x 8 ) 0.384 x 103  15 0.225 x 106 13

( 9 x 9 ) 0.571 x 103  15 0.138 x 107 13
(10 x 10) 0.812 x 103  15 0.840 x 107  11

4 8(11 x 11) 0.111 x 10 15 0.510 x 108 11
(12 x 12) 0.148 x 10 15 0.309 x 10 11

(14 x 14) 0.244 x 104 15 0.112 x101 1  9

(18 x 18) 0.545 x o4  15 0.145 x 10 6

(22 x 22) 0.103 x 105 15 0.177 x 1017  2

(26 x 26 ) 0.179 x 105  15 0.907 x 1018  O

IDGT is the approximate number of digits in the inverse which were
left unchanged after iterative improvement.

** There was no convergence in the iterative improvement. The upper

bound on the condition of v was 0.202 x 1039 based on the "best"
-1

Note: Subscripts R and Q on- IDGT refer to inversion of R and
respectively.
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is computationally impossible. Based on condition numbers and accuracy,

either formulation is acceptable for (N+2) - 5; while for (N+2) >6,

the first formulation is preferable.

It should.be noted that Finlayson (1972, p. 35) alludes to

this problem in his text but the comment is quite qualitative and some-

what obscure:

"The orthogonality of the polynomials gives

computational advantages, although the same approxi-

mation can be expressed in terms of powers of x,

if the computations can be done accurately enough."

The preceding analysis used the roots of the so-called shifted

Legendre polynomials. These are defined by equation (45) if one lets

a = O, b = 1 and w(Z) = 1. The polynomial coefficients were computed

using the relationships of Villadsen (1970). Figure 6 shows the behavior

of the first four of these polynomials. The roots were computed by

shifting the abscissas from Gaussian quadrative formulae, available in

Abramowitz and Segun (1965), Love (1966), and Stroud and Secrest (1966).

Although most of the problems solved by others using orthog-

onal collocation have not required over 12 collocation points, the

results of this section point out a computation disadvantage of the

second formulation which appears at a fairly small degree of discreti-

zation and which gets progressively worse. The first formulation

requires some additional information but successfully circumvents the

problems inherent in the second formulation.
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1.0

P (z)

./ i
'/ -- P (z)

i'. ,i

9 /

S--- P3 (Z)

P4 (Z)

Figure 6. Shifted Legendre Polynomials of Order Zero to Four
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C. Sample Application of Orthogonal Collocation

The preceding can be applied to illustrate how a partial

differential equation of the type encountered in chromatographic systems

analysis can be solved. The same example will be used (except for the

forcing.function) as was considered in the evaluation of the finite

difference technique the problem is:

(1/Pe) (22y/c2) - dy/dZ = 2/ de

y (z, o) = o

y (o,) = 0(e) ; e > o

y (Z , a)/z = o ; e > o

,! The preceding analysis has been conducted based on the spatial interval

of TO, 11 as the interval of orthogonality for the orthogonal poly-

nomials used in the trial function expansion. However, as was shown in

Section IV, Z0  should be different from unity depending on the value

of the Peclt number. To avoid the derivation of addition polynomials

orthogonal on an interval [, Z0 ] and the determination of the

required roots, the above problem may be rescaled in the spatial domain

by the following change in variable:

Znew = (l/Zo) Z

Therefore:

1/d z = (1/Z O) l/dZnew  (70)

(l/d )2 = (1/Zo0 )2 (/1a Z ne w )2
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Use of equations (70) and (71) and deletion of the subscript "new"

yields the re-scaled problem:

( () 2 (C2y/cz 2) -( ) Oy/dz) = a)y/ 9 (72)

y (Z, 0) = 0 (73)

S(o, e) = (e) ; e > o (74)

y (1, e)/CZ 0 ; e > o (75)

Where one was concerned about the dimensionless length of unity in the

old coordinate system, one is now concerned with the dimensionless

length of (1/Z0 ) which now corresponds to the outlet of the bed.

One can now apply the matrices given in equations (58) and

(59) to yield a set of coupled, ordinary differential equations. Since

one requires the partial differential equation to be satisfied at the

N collocation points, the result is N coupled ordinary differential

equations. If

.. = R2 R j, R .. ;
[ 1 ]Pe ZiO n ZO

i = 1, N+2 ; j=l, N+2 (76)

then

N+2-
y

= [Wj y. ; j=2, N+1 (77)

i=l
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Application of the boundary conditions yield:

Y, = y(z, ~) = (e) = (e) (78)

and
N+2

0 = R ]N2,i Yi (79)
i=l

Using equation (79) one may solve for YN+2 (=y (N+2' o)):

N+l

R R1I N+2,i Yi R1 N+2,1 yi

N+=2 2-1 (80)

Y2 E 5-+2, N+2 ] - +2, N+2(8

Equations (78) and (80) can furtherbe used to reduce equation (77) to:

d y N1 yi
SLw - WjN+2  1T+2,i y

]1\1+2,N+2

+ [ Bj, N+2 ]N+2, I

h+2,N+2

j 2y N+l (81)



Now, define the following quantities:

Y1 Y2

Y2 3

(82)

YN YN+l

d Y1 /d 8

Y = (83)

d YN/de

[Aji L]j+1, i+l [Wj+1, N+2 N+2, i+1

] N+2, N+2 ; i=l, N ; j=l, N (84)

[b]j [W j+1,l - j+1 , N+2 2,1

Di -]N+2, N+2 ; j=l, N (85)

Equations (82) through (85) may now replace equation (81)

by:

Y = A Y + b 0 (e) (86)

Thus, one has reduced the distributed system to a lumped system via the

spatial discretization given by application of the orthogonal collocation
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method. Equation (86) is a general form for a forced, linear system

of ordinary differential equations. The stability of the system is

determined solely by the characteristic values or eigenvalues of the

system matrix A.

An eigenanalysis was made of A for Peclet numbers of 1,

10, 100, 1000, and 10,000. The number of collocation points, N, was

varied in the sequence 4, 8, 12, 16, 20, and 24. The shifted Legendre

polynomials and roots were used in the analysis. The value of ZO was

held at 2 for all cases.

For the cases of Pe of 10, 100, 1000, and 10,000, the

eigenanalysis yielded eigenvalues with negative real parts or the

calculation was stable. For the cases of a Pe of 1 and all N, there

was a least one eigenvalue with a positive real part, revealing an

unstable computational method.

While stability is indicated by the negative real parts of

the eigenvalues, an oscillatory behavior Tvas indicated by the presence

of imaginary parts for a majority of the -igenvalues in each case.

Prior to this eigenanalysis, some simulations had been made which exhibited

damped oscillation in response to 0 (e) being a unit rectangular pulse.

Additional simulations were performed after the eigenanalysis with

similar oscillations noted in the responses at the collocation points.

Figure 7 shows a simulation for N=4, ZO=2 and Pe=lO0. The forcing

function, 0 (e), is a unit rectangular pulse of duration 5.0 dimen-

sionless time units. The value of the response at Z = 1/Z 0 is inter-

polated by the formula:

T R-1
y (I/Z O, 9) = r = y (87)
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where:

1

(1/Z0)
(1/ZO) (1 - 1/ZO) P0 (1/Zo)

(1/ZO) (1 - i/zO) p1 (1/ZO)

r (88)

(1/ZO) (1 -1/Z 0 ) PN-l(1/ZO)

While the siniulation appears adequate for long-time dynamics,

it appears inadequate for short-time dynamic situations which are in the

pulsed chromatographic system.

It is concluded that the trial function proposed for work

in axial-diffusion may be adequate for steady-state analysis and for

long-time dynamic analysis of systems forced by inputs such as step

functions. The next section presents ideas as to how a different trial

function expansion may give better results for the short-time dynamics

prevalent in the pulsed chromatographic system.

D. Use of Orthogonal Collocation in Chromatographic System

Modelling

The results of the previous section have fbrced considera-

tion of a trial function which may be more adequate for purposes of

the dynamic analysis of the pulsed .chromatographic system. For the

problem considered in section VI.C., an alternative trial function



53.

expansion is proposed which may be more suitable for the pulsed system.

It is:

N

y(Z,G) = f(e-Z) + g(G) Z + Z(1-Z) a. () Pi-1 (Z)

i=l

The difference from the previous trial function form resides

in the first term of the trial function, f (e-Z). At Z=O, this is

just f (,9) or (9), the input wave. At subsequent axial positions,

the trial function is the translated input plus some additional terms

to "correct" for the axial diffusion. This analysis corresponds to

the situation where Pe = m . A hyperbolic problem results with the

analytic solution:

y (z, e) = ¢ (e - z)

From the problem of diffusion and convection alone, this function

included in the trial function should yield a response with a correct

mean since the mean of the response is unaffected by the diffusive

term.

Use of this type of trial function revision is presently

being studied. It is thought that results obtained by using this

revised trial function will be more favorable than the results obtained

using equation (46).

VII. CONCLUSIONS AND FUTURE WORK

This report has summarized work conducted during the period

June 1972 through August 1973. The work has dealt with the area of

chromatographic systems study referred to as Model Improvement.



54.

Previous work dictated the formulation of a model which took into account

more of the dynamically relevant transport mechanisms. A model has been

formulated which includes intraparticle diffusion and rates of adsorp-

tion that were heretofore neglected. The model has been analysed using

the moment analysis technique. This analysis of the proposed Inter-

Intraparticle Adsorption Model indicates that the gross characteristics

of actual data are more adequately predicted than with previous models.

The mathematical complexity of the proposed Inter-Intraparticle

Adsorption Model has prompted consideration of numerical techniques

appropriate for the solution of the partial differential equation models

which are being postulated. The use of numerical techniques for the

second-order models being considered requires the use of a finite

terminal boundary condition. Criteria have been developed for a simple

model ~herein a finite terminal boundary condition can be applied which

yields system responses which are for all intents and purposes equiva-

lent to the responses obtained using an infinite column boundary condi-

tion.

Investigations into the merits of the more popular Finite

Difference Technique for solutions to partial differential equations

of the type encountered in chromatographic modelling have concluded

that their use is not warranted because of the large degree of spatial

discretization required for numerical stability. This drawback forces

the use of a large amount of computer time to perform simulations.
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Investigations into the merits of the method of Orthogonal

Collocation as applied to the solution of partial differential equa-

tions of the type encountered in chromatograph system models has

resulted in some inadequate results. However, the results are based

on a trial function expansion which is more suitable for steady-state

system analysis. The use of a modified trial function should give

results which better model the dynamics of the system.

Future work in the area of chromatograph system modelling will

deal with the establishment of a reliable and efficient technique for

the numerical solution of the chromatograph model equations such that

the dynamic effects of the added transport mechanisms, which prohibit

analytic solutions, may be adequately studied and analysed.
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IX. NOMENCLATURE

A- unit impulse, Dirac delta function.

A - system matrix.defined by equation (84).

Ay ,AxAG - areas under output response curve, input response

curve, and impulse response curve, respectively.

a - lower bound of interval of orthogonality used in

orthogonal polynomial definition, equation (45).

ai(9) time-varying coefficients in trial function

expansion.

a - ratio of interfacial area to packed volume.

b - upper bound of interval of orthogonality used in

orthogonal polynomial definition, equation (45).

b forcing function vector defined in equation (85).

ci  scale factor used in orthogonal polynomial

definition, equation (45).

d. () - time varying coefficients in trial fmunction

expansion.

d - vector of time-varying coefficients defined in

equation (63).

f() - time-varying function in the trial function

expansion.

f .. vector of time-varying coefficients defined in

equation (50).

g() time-varying function in the trial function

expansion.
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L - length of chromatograph column.

M equilibrium constant.

N number of collocation points.

NRU - the number of reactor units, a dimensionless

measure of the rate of adsorption.

NtoG  number of transfer units, dimensionless.

Pe Peclet number, dimensionless.

Pe A  - intraparticle Peclet number, a dimensionless

measure of diffusion rates within the particle.

PeE interparticle .Peclet number, a dimensionless

measure of diffusion rates within the carrier gas.

Pi(Z) group of polynomials, initially arbitrary but

later constrained to be orthogonal on interval

[a, b] by equation (45).

S- matrix defined by equation (62).

1- matrix defined by equation (66).

_q2 matrix defined by equation (67).

r - intraparticle space variable, dimensionless.

r - vector defined by equation (88).

R - particle radius.

RA  - rate of sample adsorption.

R - moles of fluid in particle per mole of adsorption

sites.

R0  moles of fluid within the total bed per moles

of adsorption sites within the bed.
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R matrix defined by equation (49).

R1 - matrix defined by equation (56).

R2 - matrix defined by equation (57).

Res residual formed by trial function substitution

in a differential equation.

s Laplace transform variable.

W(Z) weighting function used in orthogonal polynomial

defining equation (45).

W. - weighting function in weighted residual integral,

equation (43).

W - matrix defined by equation (76).

xa - adsorbed phase concentration, dimensionless.

y - interparticle gas phase composition, dimensionless.

i - intraparticle gas phase composition, dimensionless.

Y - equilibrium intraparticle gas phase composition ,

dimensionless.

y - vector defined by equation (48).

Y - vector defined by equation (82).

Y - vector defined by equation (83).

Z - axial position in column, dimensionless.

Z.- collocation point or end point, dimensionless.

O- axial position where finite terminal boundary

condition, equation (33), is applied.
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GREEK LETTERS

S- particle porosity or void fraction.

CI0 - time increment in finite difference method.

A Z - space increment in finite difference method.

s ( ) - Dirac delta function.

.i - Kronecher delta

e - void fraction of the bed.

- dimensionless time variable.

fn - the nth  moment about the origin defined by

equation (14).

th

in - the n moment about pl defined by

equation (17).

0 - function which satisfied boundary condition

in trial function expansion.

SUBSCRIPTS

I - refers to Case I boundary condition analysis.

II - refers to Case II boundary condition analysis.

i - refers to space level in Finite Difference

technique; refers to column in Orthogonal

Collocation matrices.

j refers to time level in Finite Difference tech-

niques; refers to row and/or collocation point

in Orthogonal Collocation matrices.

MISCELLANEOUS

L _i. - refers to the matrix element of the j th row and

ith column.
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Model Equations.
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Appendix B Details of Moment Analy7sis for Pulsed Systems.
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Appendix C Derivation of the Transfer Function for the

Inter-Intraparticle Adsorption Model.
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Appendix D Derivation of the Moments of the Impulse Response of
the Inter-Intraparticle Adsorption Model.
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Appendix E Case I and Case II Transf'er Function Derivations
and Momuent, Derivations.
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Appendix F Upper and.Lower Bounds for the Condition of a Matrix.
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